Matematical correction of incomplete charge collection for photon energies up to 300 keV.

Dana Kurková NATIONAL RADIATION PROTECTION INSTITUTE Bartoškova 28, Praha 4

Semiconductor detectors based on CdTe (or CZT)

- popular in the field of gamma and X-ray spectroscopy
- high detection efficiency
- good energy resolution
- can be performed at room temperature
- disatvantage is spectral distortion, corrected by response matrix
- e.g. detection efficiency, escape effect, Compton effect

CdTe detector (AMPTEK):

- planar crystal CdTe: 3 mm x 3 mm x 1 mm
- Peltier cooler, T: from 210 K to 215 K
- Be window: 0.1 mm
- bias voltage: 700 V
- fabricated as Schottky diode
- arrangement reduce the effect of incomplete charge collection

- multichannel analyzer, detection capability 2.10⁵ imp/s,
- detection efficiency maximum in the range from 10 to 100 keV
- spectral distortion:
- incomplete charge collection of positive charge from crystal volume
- ** Kurková, D., Judas, L. "An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies
 up to 300 keV." Radiation Physics and Chemistry 146 (2018) 26–33.

Spectrum of radioactive source ¹⁰⁹Cd (A=1.481 MBq k 20.12. 2007): 88 keV, 22.2 keV, 21.9 keV

Response matrix for incomplete charge collection T(E_i, E_k)

- Hecht equation model of incomplete charge collection:
- vector B = instrumental (measured) spectrum
- vector A = physical spectrum
- B=A.T
- ► A=B.T⁻¹
- solved as a system of linear equations without explicitly forming T⁻¹

T construction : modification of unity matrix (ideal detector)

- algorithm:
- imaginary divide crystal into n layers each assigned with F_i and E_{det}

$$F_{i}(E_{0}, \Delta x, i. \Delta x) = \frac{e^{-\mu(E_{0}).i.\Delta x}}{\sum_{i=1}^{n} (e^{-\mu(E_{0}).i.\Delta x})}$$

 F_i : the normalized probability of the absorption of photon of energy E_0 in the i^{th} layer

World Congress on Medical Physics & Biomedical Engineering

June 3–8, 2018, Prague, Czech Republic, www.iupesm2018.org

$$E_{det} = E_0 \cdot \eta(x)$$

$$\eta = \frac{\lambda_e}{D} \left(1 - e^{\left(\frac{-(D-x)}{\lambda_e}\right)} \right) + \frac{\lambda_h}{D} \left(1 - e^{\left(\frac{-x}{\lambda_h}\right)} \right)$$

Hecht equation*

x distance from cathode to the point of interaction D=1 mm – crystal thickness

 $\lambda_{\text{E}}, \lambda_{\text{H}}$ mean free path of electrons and holes

* Hecht, K., 1932. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Zeit. Physik, 77, 235-245.

$$I_n = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Algoritm (continue):
- the same with unity matrix
- imaginary divide into n parts weighted with F_i
- energy shift by E_{det}

World Congress on Medical Physics & Biomedical Engineering

June 3-8, 2018, Prague, Czech Republic, www.iupesm2018.org

¹⁵²Eu

dotted line: measured spectrum solid line: inverse transformation channel width = 1.66 keVline 344.3 keV, R: $2.4\% \rightarrow 0.96\%$ (±0.28%)

⁵⁷Co

solid line: model of the distortion dotted line: measured spectrum dashed line: inverse transformation channel width = 0.5 keV

N120, N150, N200, N250, N300 (norm ISO 4037-1:1-1996)

model: SpekCalc *

* Poludniowski,G., Landry, G., DeBlois, F., Evans, P.M., Verhaegen, F., 2009. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol. 54 N433-N438

Optimization of mean free path λ_{E} and λ_{H} :

- 0 120 kV: $\lambda_E = 24$ cm and λ_H range from 0.4 to 1.0 cm
- 150 300 kV: $\lambda_E = 24$ cm and λ_H range from 0.16 to 0.65 cm
- energy dependence of this phenomenon

Spectral parameters (for quantitative analysis):

- $E_{(mean)} = \sum (E_i \cdot N_i) / \sum N_i$
- R=FWHM/E(mean)
- FWHM: halfwidth of bremsstrahlung
- HVL1

Emean, 1stHVL, FWHM and R, evaluated from the ISO norm the ISO norm

Beam quality	E _(mean)	(keV)	1 st HVL (mm Cu)		R (%)		FWHM (keV)	
	theoretical	ISO	theoretical	ISO	theoretical	ISO	theoretical	
N120	101	100	1.73	1.71	28	27	28	
N150	119	118	2.39	2.36	39	37	46	
N200	167	164	3.90	3.99	31	30	51	
N250	212	208	5.09	5.19	28	28	58	
N300	254	250	5.90	6.12	27	27	70	

Emean, 1stHVL, experimental and evaluated from measured X-ray spectra uncorrected and with the added correction of the incomplete charge collection.

experimental	unc	orrected	corrected		
1stHVL (mm Cu)	E _(mean) (keV)	1 st HVL (mm Cu)	$\mathbf{E}_{(\mathrm{mean})}$ (keV)	1 st HVL (mm Cu)	
1.76	99.0	1.65	101.0	1.72	
2.40	114.9	2.20	118.6	2.37	
4.06	160.2	3.67	165.0	3.83	
5.29	202.2	4.88	208.6	5.02	
6.24	247.8	5.81	255.8	5.97	
-	experimental 1stHVL (mm Cu) 1.76 2.40 4.06 5.29 6.24	experimental unc 1stHVL (mm Cu) E _(mean) (keV) 1.76 99.0 2.40 114.9 4.06 160.2 5.29 202.2 6.24 247.8	experimentaluncorrected1stHVL (mm Cu) $E_{(mean)}$ (keV)1st HVL (mm Cu)1.7699.01.652.40114.92.204.06160.23.675.29202.24.886.24247.85.81	experimental uncorrected corr 1stHVL (mm Cu) E _{(mean}) (keV) 1 st HVL (mm Cu) E _{(mean}) (keV) 1.76 99.0 1.65 101.0 2.40 114.9 2.20 118.6 4.06 160.2 3.67 165.0 5.29 202.2 4.88 208.6 6.24 247.8 5.81 255.8	

- E(mean) v.s. ISO 4037-1:1996,
 - difference from 2,8 % to 2,3% , values (< 5 %)
- E(mean) v.s. theoretical,

difference from 4,4% to 1,4%

	ISO				theoretical			
beam	Uncorrected		corrected		uncorrected		corrected	
quality	E _{mean} (%)	^{1st} HVL (%)						
N120	1.0	3.5	-1.0	-0.6	2.0	4.6	0	0.6
N150	2.6	6.8	-0.5	-0.4	3.4	7.9	0.3	0.8
N200	2.3	8.0	-0.6	4.0	4.1	5.9	1.3	1.8
N250	2.8	6.0	-0.3	3.3	4.4	4.1	1.4	1.4
N300	0.9	5.1	-2.3	2.5	2.6	1.5	-0.6	-1.2

Conclusion

- correction done with an analytical approach
- without the use of stochastic (Monte Carlo) method and
- without iterative or sequential mathematical methods
- model was based on the Hecht equation.
- corrected spectra are in better agreement with the theoretical model
- and the ISO

Project **Ministery of the interior** of the Czech republic MV-25972-2/OBV-2012-2016, MV-163433-4/OBVV-2016

World Congress on Medical Physics & Biomedical Engineering

June 3-8, 2018, Prague, Czech Republic, www.iupesm2018.org

