Katalog rentgenových spekter měřených polovodičovým CdTe detektorem.

Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4

Katalog navazuje na katalog spekter vytvořený v Ústavu hygieny a epidemiologie v roce 1991 dostupný v tištěné formě.

Podobné katalogy změřených spekter jsou dostupné v literatuře relativně vzácně vzhledem k obtížnosti měření spekter způsobené zejména vysokými fotonovými toky zdrojů rentgenového záření a nemožností nastavení nízkých fotonových toků u těchto zdrojů.

Teoretické modely:

SpekCalc

Poludniowski,G., et al. 2009, Phys. Med. Biol. 54 N433-N438 TASMICS, TASMIP, MASMICS, RASMICS Hernandez AM, et al. 2017, Med. Phys. 44(6), 2148-2160

- líší se filtrací a materiálem anody, anodovým úhlem

katalog rentgenových spekter

<u>word dokument</u>

grafické zobrazení spekter

tabulky s charakteristickými daty odvozenými ze spekter a dostupnými daty z literatury umožňující porovnání (Estř, 1HVL, 2HVL, h, FWHM, R) údaje o kV a filtraci

data jednotlivých spekter v textovém formátu

datová struktura vytvořená v prostředí Matlab

data spekter a hodnoty koeficientu homogenity, střední energie a 1HVL **M-file**

zobrazení spektra v grafickém okně spolu s jeho názvem, střední hodnotou energie, 1HVL a koeficientem homogenity).

Jaké kvality

- <u>Úzké svazky podle ISO 4037-1:1996</u>. X and Gamma reference Radiation for Calibrating Dosemeters and Doserate Meters and for Determining Their response as a Function of Photon Energy.
- <u>Spektra podle ČSN EN 61331-1 ed.2</u>, Norma: Ochranné prostředky před lékařským diagnostickým rentgenovým zářením Část 1: Stanovení vlastností zeslabení materiálů.
- <u>Mamografické svazky a spektra typu RQR</u>, dle Internal Atomic Energy Agency, 2007. Technical Reports Series, ISSN 0074-1914, No. 457. Dosimetry in Diagnostic Radiology: An Internal Code of Practice, ISBN 92-0-115406-2. p. 70.
- <u>Skiaskopická spektra</u>, skiaskopický mod, proud 10 mA, 300 μm kolimátor, 256 cm od ohniska
- info o rtg lampách

Polovodičové detektory na bázi CdTe (nebo CZT)

- populární v oblasti gamma a rentgenové spektroskopie
- vysoká detekční účinnost, maximum v oblasti od 10 do 100 keV
- dobré energetické rozlišení
- mohou pracovat při pokojové teplotě
- nevýhodou je spektrální zkreslení, korekce pomocí matice odezvy
- např. detekční účinnost, únikové jevy, Comptonův jev
- neúplný sběr kladného náboje z objemu krystalu

CdTe detektor (AMPTEK):

- planární krystal CdTe: 3 mm x 3 mm x 1 mm
- Peltier chlazení, T: od 210 K to 215 K
- Be okénko: 0.1 mm
- bias napětí: 700 V
- vyroben jako Schottky dioda
- uspořádání snižuje jev neúplného sběru náboje
- multikanálový analyzátor, detekční schopnpst 2.10⁵ imp/s

Korekce pomocí analytické matice odezvy

Kurková, D., Judas, L. "An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies up to 300 keV." Radiation Physics and Chemistry 146 (2018) 26–33.

Kurková, D., Judas, L., 2016. X-ray tube spectra measurement and correction using a CdTe detector and an analytic response matrix for photon energies up to 160 keV. Radiat. Meas. 85, 64-72.

Rentgenové svazky

Intenzity 10²⁻³ násobně převyšují detekční schopnost detektoru

```
Mamografie : 10<sup>6</sup> -10<sup>7</sup> imp/(mm<sup>2</sup>.s)*
Diagnostické: 10<sup>6</sup> imp/(mm<sup>2</sup>.s) for 100 kV and 25 mA**,
```

Podmínky pro měření bez náhodných koincidencí

- 100 1000 impulzů/s (měřením bodového zářiče)
- velká vzdálenost detektor zdroj záření (7m, 1m nebo 1.842 m)
- použití kolimátorů (\emptyset 1 mm a 2 mm tloušťka, \emptyset 300 μ m a 35 mm délka)
- nízký anodový proud (nejmenší až 0.1 mA)

*Abbene L. et. al.: X-ray spectroscopy in mammography with a CdTe Spectrometer. Medical Physics, Vol. 37, No.12, December 2010, s. 6147-6156.

** Yaffe, M. et al.: Spectroscopy of diagnostic x rays by a Compton-scatter method. Medical Phasics, Vol. 3, No. 5, Sept./Oct. 1976, 328-334.

Příklad korekce únikových jevů v rentgenových spektrech pomocí matice odezvy

<u>RQR 6</u> (60kV, 2.89 mm Al)

<u>N60</u> (60 kV, 0.6 mm Cu, 4 mm Al)

Příklad korekce detekční účinnosti a Comptonova jevu v rentgenových spektrech

<u>N150</u> (150 kV, 25 mm Sn, 4 mm Al)

Korekce Comptonova jevu , hrana Ec=55.5 keV (model Klein-Nishina*)

Comptonův jev nebyl korigován

*H.E. Johns, J.R. Cunningham, The Physics of Radiology

Příklad korekce Comptonova jevu v rentgenových spektrech N200, N250, N300

Příklad korekce neúplného sběru náboje u čarových spekter

¹⁵²Eu

tečkovaná čára: měřené spektrum plná čára: korígované spektrum šířka kanálu = 1.66 keV čára 344.3 keV, R: 2.4%→0.96 % (±0.28%)

⁵⁷Co plná čára: model tečkovaná čára: měřené spektrum čárkovaná čára: korigované spektrum šířka kanálu = 0.5 keV

Příklad korekce neúplného sběru náboje u rentgenových spekter typu N

N120, N150, N200, N250, N300 (norma ISO 4037-1:1-1996)

Příklady přítomnosti sumačních signálů ve spektrech.

120 kV, filtrace: 2.5 mm Al, 0.3 mm Pb (anodový proud vlevo 0.5 mA a vpravo 0.1 mA) (input rate vlevo 610 count/s a vpravo 230 count/s)

<u>Příklad přítomnosti dodatečné filtrace kolimátorem</u> (wolfram) ve spektrech.

RQR6

Vzdálenost detektoru od ohniska rentgenky: 100 cm kolimátor: 300 μm Laserový paprsek v ose kolimátoru

Vzdálenost detektoru od ohniska rentgenky: 184,2 cm kolimátor: 300 µm a 1 mm Laserový paprsek v ose kolimátoru Laserová vodorovina

E(stř)_, 1HVL, FWHM a R odvozené z teoreticky vypočtených spekter a přejaté z ISO normy

svazek	E _(stř) (keV)		1 st HVL (mm Cu)		R (%)		FWHM (keV)
	teoretické	ISO	teoretické	ISO	teoretické	ISO	teoretické
N120	101	100	1.73	1.71	28	27	28
N150	119	118	2.39	2.36	39	37	46
N200	167	164	3.90	3.99	31	30	51
N250	212	208	5.09	5.19	28	28	58
N300	254	250	5.90	6.12	27	27	70

Tolerance hodnot dle ISO: Estř \pm 5% , rozlišení R \pm 15%

E(stř)_, 1HVL, měřené a vypočtené z měřených a korigovaných rentgenových spekter

svazek	měřené	vypočtené ze spekter			
	1stHVL (mm Cu)	E _(mean) (keV)	1 st HVL (mm Cu)		
N120	1.76	101.0	1.72		
N150	2.40	118.6	2.37		
N200	4.06	165.0	3.83		
N250	5.29	208.6	5.02		
N300	6.24	255.8	5.97		

Výpočet HVL z rentgenových spekter

Vstupní povrchová kerma K na povrchu detektoru pro monoenergetické fotony :

 $K = 0.00869 \times 1.83 \times 10^{-6} \phi(E) \times E \times (\mu_{en}/\rho)_{air},$

 $\emptyset(E)$... fluence fotonů (fotony/mm²) s energií E(keV),

 $(\mu_{en}/\rho)_{air}$... hmotnostní součinitel absorpce energie pro vzduch (cm²/g).

Kerma K pro několik tlouštěk měděných filtrů. Interpolace dvou bodů obklopujících HVL tloušťku

$$d_{1/2} = \frac{t_b \cdot \ln(2K_a / K_0) - t_a \cdot \ln(2K_b / K_0)}{\ln(K_a / K_b)}$$

Měření HVL

geometrie úzkého svazku, ionizační komora (Exradin A4) a elektrometr (Keithley 6517A).

Projekt byl řešen za podpory Ministerstva vnitra ČR v rámci programu MV-163433-4/OBVV-2016.