

1ml

AIRBORNE GAMMA-RAY SPECTROMETRIC SOFTWARE

21 - 22 May 2019, Prague, Czech Republic

Státní ústav radiační ochrany, v. v. i. National Radiation Protection Institute

SPECTRONICA

Marcel Ohera Lukáš Skála Anna Selivanova Lukáš Kotík Pavel Jurza

BASIC PRINCIPALS OF AGAMA AIRBORNE SOFTWARE

Reasons for developing new program for airborne survey

- Results coming from our IRIS not satisfactory. Producer is not willing to make any changes
- PRAGA4 used for post-processing developed in old-fashion environment and is not user-friendly
- Many separate software packages (project preparation, data postprocessing, browsing, data converter, etc.)
- Other detectors are used for airborne measurements (mainly HPGe detectors and plastic detectors)

Project Name:

Recovery Management Strategy for Affected Areas after Radiation Emergency

Period: 2017 - 2020

Co-operation:

Responsible authority: National Radiation Protection Institute (SÚRO), CZ Nuvia CZ, a.s., software development Spectronica, Australia, software development

PRAGA 4

post processing software for NaI(TI) detectors

PRAGA 4 capabilities:

Originally designed for geophysics

- LSQ Least square method using Monte Carlo code (for 11 radionuclides, i.e. K, U, Th,Cs-137, Cs-134, Co-60, Ru-103, Mo-99,I-131, Ar-41 and Kr-88)
- Standard window (ROI) method based on processing IAEA standards (K, U, Th)
- Dose rate in nGy/h from power spectrum, dose rate from K, U a Th windows and from TC (used in geophysics 410 2800 keV)
- NASVD/MNF (methods for noise removal in spectra)
- Radon removal

AGAMA - NEW post processing software for NaI (TI) detectors

Project 2017-2020

AGAMA new capabilities: Designed for emergency monitoring

LSQ – Least square method using Monte Carlo code (for K, U, Th, Cs-137, Cs-134, Ru-103, I-131 – non-negative values)

Extended window (ROI) method based on processing IAEA standards (K, U, Th, Cs-137)

Dose rate in nGy/h from power spectrum, recalculated to 1m above the ground plus dose rate from activities (+ TC from PRAGA4)

- Cosmic dose rate calculation (depending on altitude above sea level)
- MDA calculation–Currie and ISO IEC 11929-2010
- Project preparation and data displayed in open free maps (replacing PEIConvert)
- Data browsing and quick data processing (replacing PEIDataViewer)
- Input /output data formats PEI binary, ASCII, ERS 2.0 ANSI N.42 , KLM/KLZ output

Future software development

AGAMA software package

- Other NaI(TI) non-standard volumes, NASVD/(MNF) methods, radon removal
- HPGe separate software package ready as separate package
- Man made nuclide activities calculation on ground using MCNP simulation, dose rate on ground calculation
- Plastic detectors ready as separate package
- UAV different detectors

BASIC PRINCIPALS:

- Helicopter background and cosmics
- Extended Windows Methods (K, U, Th, Cs-137 activities, dose rates from activities)
- MCNP response matrixes for LSQ method + some EWM parameters
- Dose rates calculation from power spectrum
- LSQ method (including non-negative values) for natural radionuclides, Cs-137, Cs-134, Ru-103, I-131)
- Minimum detectable activities according to ISO-IEC 11929-2010

Helicopter background and cosmics

Mi-17 helicopter (90-95%) / Bell 412 (5-10%)

Crew: 1 pilot + 1 navigator **Operators:** 1 IRIS operator Only IRIS system on board Availability: Occasionally

Helicopter background and cosmics

Helicopter background and cosmic contribution important both for window and LSQ methods

- No sea
- Small water areas unsuitable
- Flights over larger water areas prohibited in CZ

 $CR_{BKGD} = CR_{B,Heli} + S_c \times CR_{Cos}$

where:

 CR_{BKGD} is the combined cosmic and aircraft background in each spectral window, $CR_{B,Heli}$ is the helicopter background in the window, CR_{Cos} is the cosmic channel count, and S_c is the cosmic stripping factor for the window

Location	GPS position	Water (ground) level above sea	Altitudes above sea level
Switzerland, Zugersee	47.1504803N, 8.4833119E	417 m (water); Zugersee	507, 597, 717, 1017, 1617, 2217
	:		: and 2817m
CZ-Bohemian-Moravian	49.430764N, 16.055372E		2059m
Uplands	49.432796N, 15.899040E	approx. 600 m (ground)	2490m
	49.449088N, 15.773195E		: 3023m
CZ-Brdy	49.597313N, 13.606682E		: 2215m
	49.581171N, 13.420710E	approx. 450-500m (ground)	2607m
:	49.564342N, 13.183049E		: 3167m

Helicopter background and cosmics

CR_{BKGD}= CR_{B,Heli} + S_c x CR_{Cos}

Helicopter background and cosmics

 $CR_{BKGD} = CR_{B,Heli} + S_c \times CR_{Cos}$

Helicopter background and cosmics

CR_{BKGD}= CR_{B,Heli} + S_c x CR_{Cos}

Nuclide	Windows	Sc			
			ZugerSee	Vysočina	Brdy
Cs-137 _(IAEA)	105-120		0.0805	0.0805	0.0805
Cs-137 _(PEI)	98-130		0.1775	0.1775	0.1775
K	232-267		0.0631	0.0631	0.0631
U	283-317		0.0534	0.0534	0.0534
Th	411-480		0.0664	0.0664	0.0664

Nuclide	Windows	CR _{B.Heli}			
			ZugerSee	Vysočina	Brdy
Cs-137 _(IAEA)	105-120		20.6	15.4	21.4
Cs-137(PEI)	98-130		35.6	26.8	37.0
K	232-267		12.8	10.7	11.8
U	283-317		6.6	3.8	7.1
Th	411-480		0.7	0.7	0.1

Helicopter background and cosmics

Mi-17 and Bell 412 helicopter bkgd spectra

cps PRAGA4 Cosmics+ Aircraft 2800 m above sea Smoothed/measured aircraft+cosmics channels

PRAGA4 bkgd model versus data measured

Helicopter background and cosmics

The background spectra were used in:

- Extended windows method (background in windows ¹³⁷Cs, ⁴⁰K, ²¹⁴Bi and ²⁰⁸Tl)
- Air dose rate claculation at 1m above ground from power spectrum
- Background file in LSQ and NN-LSQ method

Extended window method

What is needed for standard windows methods

Airborne:

Total cps: n_K, n_U, n_{Th} Stripping factors: α , β , γ , a Stripping increase per 1m: $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$, Δa Reference altitude to ground correction: ~ exponential Reference altitude to ground correction: ~ exponential Sensitivities for reference altitude: A_{K.K}, A_{U.U}, A_{Th.Th}

What is needed for extended windows methods

Airborne:

Total cps: n_{Cs}, n_K, n_U, n_{Th} Stripping factors: α , β , γ , a, δ , ε , τ (b=g=d=e=t=0) Stripping increase per 1m: $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$, Δa , $\Delta \delta$, $\Delta \varepsilon$, $\Delta \tau$ Sensitivities for reference altitude: A_{Cs,Cs}, A_{K,K}, A_{U,U}, A_{Th,Th}

Extended window method – Portable ground spectrometers

n_{ij} net count rate in ii-th window - background corrected,

 c_{ii} activity concentration or surface activity – background corrected,

(A_{CsCs})	A_{CsK}	A_{CsU}	A_{CsTh}	(n_{CsCs})	n_{CsK}	n_{CsU}	n_{CsTh}	$\left(c_{CsCs} \right)$	C _{CsK}	C_{CsU}	$\left(c_{c_{STh}}\right)^{-1}$
A _{KCs}	A_{KK}	$A_{_{KU}}$	A _{KTh}	n_{KCs}	n_{KK}	n_{KU}	n _{KTh}	$\times c_{KCs}$	$c_{\rm KK}$	c_{KU}	C _{KTh}
A_{UCs}	A_{UK}	A_{UU}	A _{UTh}	n_{UCs}	$n_{_{UK}}$	n_{UU}	n _{UTh}	c_{UCs}	C_{UK}	c_{UU}	C _{UTh}
A_{ThCs}	A_{ThK}	A_{ThU}	A_{ThTh}	n_{ThCs}	n_{ThK}	n_{ThU}	n_{ThTh}	C_{ThCs}	C_{ThK}	C_{ThU}	c_{ThTh})

Six new stripping factors

Solution of four equations with four unknown variables

$$n_{Css} = n_{Cs,Cs} + \delta \times n_{K,K} + \varepsilon \times n_{U,U} + \tau \times n_{Th,Th}$$

$$n_{K} = d \times n_{Cs,Cs} + n_{K,K} + \gamma \times n_{U,U} + \beta \times n_{Th,Th}$$

$$n_{U} = e \times n_{Cs,Cs} + g \times n_{K,K} + n_{U,U} + \alpha \times n_{Th,Th}$$

$$n_{Th} = t \times n_{Cs,Cs} + b \times n_{K,K} + a \times n_{U,U} + n_{Th,Th}$$

IAEA rocommended energy windows

Nuclide	Energy [keV]	IAEA [keV]	PEI [keV]
¹³⁷ Cs	662	618 -705	574 - 762
⁴⁰ K	1460	1370 - 1570	1371 – 1571
²¹⁴ Bi (uran)	1765	1660 - 1860	1664 - 1864
²⁰⁸ TI (thorium)	2614	2410 - 2810	2414 - 2801

Standard windows method

Stripping factors α , β , γ , a, b = g = 0

Extended windows method

Calibration on calibration pads

The Nal(Tl) 4" x 4" x 16" crystals were calibrated on standard four calibration pads in Diamo, s.p. Stráž pod Ralskem (K, U, Th and BKGD pads).

Calibration hall layout in Stráž pod Ralskem

Activity concentrations on calibration pads

Standard	% К	ppm eU	ppm eTh
РК	15,33	2,4	2,1
PU	0,24	29,2	2,4
PTh	0,29	5,1	94,6
PO	0,02	0,3	0,9

1.95m diam. \rightarrow infinite area

IRIS pack (2 x 2 litres Nal(TI) on K calibration pads

Activity concentrations on calibration pads

¹³⁷Cs calibration pad missing !!!

137 Cs calibration pad

The Cs-137 pad was simulated in Monte Carlo simulation. The net background corrected cps $n_{i,i}$ were calculated from count rates n_i in i- energy windows (K, U, Th, Cs) and stripping factors were determined.

MCNP simulation of calibration pads in Vised 24E

K-pad (measurement) and K-pad (simulation

Finally, the Cs-137 pad simulation data in Monte Carlo and K, U, Th data from measurement were combined. The net background corrected cps $n_{i,i}$ were calculated from count rates n_i in i- energy windows (K, U, Th, Cs).

MCNP response matrixes for calibration pads in Straž pod Ralskem

- K, U, Th calibration pads simulated
- ¹³⁷Cs simulated flat calibration pad located on standard calibration pads

K-pad (measurement) and + ¹³⁷Cs (simulation)

300

Height [m]

400

²³²Th – homogeneous distribution

2500

3000 500

Monte Carlo simulation – response matrixes for K, Ra, Th and Cs-137

(surface and exponencial distribution) for 4"x 4"x 16" detector

²²⁶Ra – homogeneous distribution

Height [m]

3000 500

Energy [keV]

MCNP specifications:

- Natural radionuclides:
- Soil with thickness of 50 cm, ρ=1.52 g cm⁻³
- Flight height from 0 m to 500m
- 4x4 litre Nal(Tl) crystal
- Energy threshold :30keV, max energy 3 MeV
- Branching factor > 1%
- Number of energies: K 1, U-series 31, Thseries 38, Cs-137 - 4, Cs-134 - 9.

Deposition	Surface	Exponential (relaxation length 3 cm)
	Radius	Radius
Height [m]	[m]	[m]
0		
1	150	50
25	300	300
50	400	400
60		
70		
80		
90		
100	500	500
125		
150		
175		
200		
225		
250	700	700
300		
400		
500	800	900

Additionally to the standard stripping factors α , β , γ and a, new stripping factors $\boldsymbol{\varepsilon}$ (U \rightarrow Cs) $\boldsymbol{\tau}$ (Th \rightarrow Cs) $\boldsymbol{\delta}$ (K \rightarrow Cs) for Cs-137 were introduced.

Stripping factors were calculated based on MCN P simulation

Measured on calibration pads

	SÚRO IRIS	ACR IRIS	Grasty
α	0.343	0.330	0.254
β	0.475	0.463	0.386
γ	0.855	0.839	0.760
a	0.048	0.041	0.05
δ	0.278	0.272	*
ε	2.080	2.125	*
τ	1.243	1.188	*

Calculated by Monte Carlo

	SÚRO IRIS	ACR IRIS	Grasty
Δα	0.000169	0.000169	0.00049
Δβ	0.000205	0.000205	0.00065
Δγ	0.0000281	0.0000281	0.00069
Δδ	0.000684	0.000684	*
Δε	-0.00106	-0.00106	*
$\Delta \tau$	-0.000583	-0.000583	*

Extended window method – Airborne spectrometers

•Sensitivities for natural radionuclides were measured during hovering Mi-17 helicopter at the altitude of 100 m over the reference area near Vyškov.

•The ground activity concentrations were determined using ground •HPGe measurements (in-situ).

- •Due to low Cs-137 activity (<MDA) at the reference area, the sensitivity for Cs-137 was determined using Monte Carlo simulation.
- Surface activity of Cs-137 simulated and compared to a point source with activity of 2.646 GBq

Cs-137	K-40	U	Th
[cps/kBq/m²]	[cps/Bq/kg]	[cps/Bq/kg]	[cps/Bq/kg]
(5.8 ± 1.9)	(0.127±0.015)	(0.271±0.031)	(0.586 ± 0.050)

Military Training Area near Vyškov

Google Eart

Extended window method – Airborne spectrometers

Records

@ 2018 Lubomir Grue

Extended window method – Airborne spectrometers TPC3 –reference area – Czech Republic

Result comparison AGAMA x Ground measurements

	Ground HPGe [nGy/h]	Airborne AGAMA [nG/h]	Airborne PRAGA4 [nG/h]
ADR _{Act}	(82 ± 5)	(85 ± 12)	(67 ± 9)
ADR _{Cos}	*	(32.9±0.3)	*

Extended window method – Airborne spectrometers RM2 – 90m - Switzerland - reference area

Extended window method – Airborne spectrometers RM2 – 90m - Switzerland - reference area

Data comparison – RM2-90m •Ground data •PRAGA-LSQ •PRAGA-WND •IRIS •AGAMA-WND

Extended window method – Airborne spectrometers Šumava Mountains - Czech Republic – Chernobyl Cs-137 contaminated

📲 🗧 🧣 📓 📓 📲 📲 🕲 着 🎻 🤗 📲 📓 🗳 🚾 🚾 🛜

Extended window method – Airborne spectrometers Šumava Mountains - Czech Republic – Chernobyl Cs-137 contaminated

Air dose rate from power spectrum - IDEA

Air kerma rate in 3"x3" Nal(TI) crystal - too complex

Air Kerma Rate versus cps energy dependent

Air kerma (dose) rate in V

cps – does not work Σ n_i * E_i it works for wide energy range (up to 3 MeV) and higher energies (> 500 keV)

MEASURED or Monte Carlo simulation

Tested and calibrated ground detectors (Nal(TI), HPGe, plastic detectors) for air kerma rates in environmental applications

Air dose rate from power spectrum

Principle of calibration

Spectrum

Powerspectrum

Energy independent

$$E_{ma} = \frac{\int E_a \times N(E_a) dE_a}{t}$$

$$E_{ma} = \frac{\sum_{i=j}^{n} E_a \times N(E_a)}{1 + \sum_{i=j}^{n} E_a \times N(E_a)}$$

Where

E_{ma} is the relative absorption energy rate in MeV/s,

t is the live time,

j is the initial channel number

n is the final channel number

 $N(E_a)$ is the number of counts with an energy E_a in the interval E_a ,

 $E_a + dE_a$ in a channel over the measuring time t.

Calibration was done at Low Background Chamber at SÚRO for a range from 26 nGy/h to 120 nGy/h and at Calibration Room at University of Defence, NBC Department for > 120 nGy/h

INTERNATIONAL MEETING ON AIRBORNE GAMMA-RAY SPECTROMETRIC SOFTWARE PRAGUE 21 -22 May 2019 Air dose rate from power spectrum

Angular dependence

Final calibration for 1 IRIS pack 2 x 4 litre Nal(TI) crystals

 K_a is air kerma (dose) rate in nGy/h E_{ma} is relative absorbed kerma rate in MeV/s

K_a corresponds to local air kerma (dose) rate AKR_{loc} on board

AKR_{loc} ~ terrestrial + aircraft + cosmics

Air dose rate from power spectrum

Needed:

Galtaltitude above sea level [m] UsedAlt.....altitude above ground [m] Cos Cps in cosmic channel Spectrum ... in range up to 3 MeV

Example:

Average data on TPC3 reference area Galt = 540 m UsedAlt= 99 m STP height = H =92 m AVGR SPECTRUM

E _{ma}	= 2019 MeV/s
E _{ma (Heli+cos)}	= 244 MeV/s
E _{ma} - E _{ma (Heli+cos}) = 1775 MeV/s (2 packs)

140 cps 120 100 Spectrum 80 •••• Powerspectrum 60 40 20 Energy [keV] 0 500 1000 2000 2500 3000 0 1500

 $\begin{array}{l} \mathsf{K}_{\mathsf{a}} = \mathsf{AKR}_{\mathsf{loc}} = 23.2398 + 2.717 \times 10^{-2} \times 1.18 \times \mathsf{E}_{\mathsf{ma}} + \\ 9.7791 \times 10^{-9} (1.18)^2 \times \mathsf{E}_{\mathsf{ma}}^2 \end{array}$

AKR_{gr-1m}= AKR_{loc}/(1.0071xexp(-0.00582xH)

H ... STP height

-

MCNP calculated Exponential function slightly different for man-made nuclides

Average spectrum and powerspectrum

Air dose rate from power spectrum

	ADR [nGy/h]
GROUND	(82 ± 5)
AKR _{PRAGA-LSQ}	(67 ± 9)
AKR _{Act} - AGAMA	(85 ± 12)
AKR _{1m-ter} -AGAMA- Pws	(80 ± 5)

AKR. ..air kerma rate, ADR... air dose rate Prerequisite: ADR= AKR

Air dose rate from power spectrum – RM2 - Switzerland

Linth Plain Switzerland

ADR [nGy/h]

(61 ± 5)

(67 ± 9)

(60 ± 21)

(71 ± 8)

Air dose rate from power spectrum – Sumava

	ADR [nGy/h]
GROUND	*
AKR _{PRAGA-LSQ}	*
AKR _{Act} - AGAMA	(51 ± 21)
AKR _{1m-ter} -AGAMA- Pws	(64 ± 16)

Airborne HPGe spectrometry

Two versions of post-processing software compiled by Nuvia, a.s. are available HPGe 1. AirHPGeSpec for HPGe + digiDART 2. AirHPGeSpec for HPGe + DSPEC

digiDART

- Selectable measurement interval in seconds
- GPS module
- 4 selectable ROIs
- Data saved in csv file
- Spectra saved in selected time intervals
- Individual spectra displayed in GAMWIN
- Real time

SPEC 25

- Event detection (event + time mark)
- Data saved into one spectrum file . gspl
- Altitude module + GPS module
- More selectable ROIs
- Individual spectra step + floating average
- Real time
- Two HPGe detectors are available for airborne HPGe gamma-ray spectrometry
- 1. HPGe produced by ORTEC GEM100P4; 100% efficiency ; 1.9 keV at 1.3 MeV (UNOB)
- 2. HPGe produced by Canberra GC5021

50% efficiency; 2.1 keV at 1.3 MeV (SÚRO);

AirHPGeSpec software

DSPEC 25

MAIN MENU – data processing

☆	Letecká spektrometrie – – – 🔨 🔀
Nastavení zařízení	Měření Zpracování dat Log O aplikaci
Analyzátor Index analyzátoru ORTEC GPS Použít modul GPS Com port modulu GPS Výška nad terénem Použít modul výšku nad terénem	Soubory měření C:\Users\Marcel\Documents\2016-T\Letecká gamaspektrometrie\Neidek\HPGe-20150416_0925
Nastavení ROI Nastavení total V Načíst	D:\Nejdek.csv Image: Comparison of the
Nový Smazat Uložit Název ROI Kanál od Kanál do TC 80 4096 609keV 811 820	CNT DATE_TIME LIVETIME FDX ALT LON LAT interval 1 16.04.2015 07:25:12 10 1 630 14,235753 50,0 2 16.04.2015 07:25:13 10 1 630 14,235297 50,0 3 16.04.2015 07:25:14 10 1 631 14,234867 50,0 4 16.04.2015 07:25:15 10 1 632 14,234463 50,0
1460keV 1949 1961 795keV 1057 1073 364keV 480 494 2614keV 3490 3508	5 16.04.2015 07:25:17 10 6 16.04.2015 07:25:18 10 7 16.04.2015 07:25:19 10 8 16.04.2015 07:25:20 10 9 16.04.2015 07:25:20 10 10 16.04.2015 07:25:21 10 0,00 11 617,58
spectra (step, floating avgr.)	11 10.04.2015 07:25:22 10 12 16.04.2015 07:25:23 10 13 16.04.2015 07:25:24 10

x

AirHPGeSpec software

Example of HPGe detection, Nejdek, CZ

	cps	AE	Dloc	Dgnd
		[MeV/s]	[nGy/h]	[nGy/h]
LINE 5	161.8	44.5	90	257
LINE 6	203.8	56.7	110	344
LINE 7	228.7	62.2	118	385
LINE 8	170.2	47.4	95	278

bkgd \approx 74 cps /105 nGy/h on ground

- Measured by HPGe ORTEC GEM25 P- S, (25 % efficiency)
- Total count rate shown
- Ore processing plant in Nejdek, CZ (higher activity due to uranium processing)

PLASTIC DETECTORS

Terrestrial component of air kerma rate 1m above ground IRIS -PRAGA4

Terrestrial component of air kerma rate 1m above ground Plastic detector 30x30x5cm

Air Kerma Rate - Local - 1m above ground

